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Scaling concept and the Williams-LandeI-Ferry 
relationship 
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The superposition properties of the Williams-LandeI-Ferry relationship, when obtained empiri- 
cally for different polymer systems and different temperatures, are formulated in terms of more 
general functions with a scaling property. Finally, an analytical description of these super- 
position properties is given and the influence of the selected reference temperature on the 
translations needed to obtain the universal ar(T - "Is) curve is discussed. 

1. I n t r o d u c t i o n  
The so-called time-temperature superposition principle 
is widely used to extend the range of the measurements 
when transient or dynamic viscoelastic parameters, 
electrical relaxation processes or the steady state vis- 
cosity are studied in polymers, as a function of time 
and at different temperatures [1-8]. According to this 
principle, time and temperature are equivalent, that is, 
a given property measured for short times at a given 
temperature is identical to one measured for longer 
times at a lower temperature, except that the curves 
are shifted on a logarithmic time axis. They can be 
superimposed once more by proper scale changes on 
this axis. Similarly, portions of the response curves 
can be observed at different temperatures and these 
curve segments can then be shifted along the log(time) 
axis to construct a composite curve or master curve, 
applicable for a given temperature, extending many 
decades of time. 

The shift factor for a curve segment is designated by 
aT (or bT for electrical relaxation), log aT (= log bT) 
being the horizontal displacement to allow it to join 
smoothly into the master curve. This is the factor by 
which the time scale is altered due to the difference in 
temperature, and is a function of temperature. Fur- 
thermore, for all linear viscoelastic materials over a 
limited temperature range, the horizontal shift factors 
are given by the empirical Williams-Landel-Ferry 
(WLF) equation [6] 

log a T = - C ~ ( T s ) ( T -  T~)/[C2(T~) + ( T -  T~)] 

(1) 

where T is the temperature, T~ is a reference tempera- 
ture and C~, (72 depend on T~. Furthermore, according 
to Williams et al. [6], if a reference temperature, Ts, is 

chosen arbitrarily for one system, the plots of log aT 
against T for other systems can be matched with 
horizontal and vertical translations, using transparent 
paper for coincidence in shape. In addition, it was 
found by these authors that the identical function 
a x ( T -  Ts) applies not only to polymer systems 
but also to a variety of organic and inorganic glass- 
forming liquids over a wide temperature range above 
the vitrification point. 

Povolo and Fontelos [9] have shown recently that 
the time-temperature superposition principle can be 
considered as a particular case of general functions 
leading to scaling, with a translation path parallel to 
the abscissa. In addition, the scaling property has been 
defined rigorously, to precisely give the meaning of the 
matching of the different curve segments, when the 
master or composite curve is constructed. Finally, 
the WLF equation (Equation 1) has been included 
within the general formalism presented. 

It is the purpose of this paper to study the super- 
position properties of the WLF equation, for different 
systems and different reference temperatures, in terms 
of general functions leading to a scaling behaviour. In 
addition, how the selection of the reference tempera- 
ture, T~, influences the translations needed to obtain 
the universal aT(T -- Ts) function, is discussed. 

2. Theory  
A form for the family of curves in the (x, y)-plane, at 
different z levels, which superimpose under a transla- 
tion path along a given direction, is given by [9, 10] 

g[Ax + By + Ch(z)] = ax + by + ch(z) + d 

(2) 

where g is a real function, continuous, single-valued 
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and differentiable, A, B, C, a, b, c, d are real constants 
and h(z) is a real function of z. Furthermore, the 
translation path in the (x, y)-plane is given by [9, 10] 

Ay /Ax  = (Ac - Ca)/(Cb - Bc) (3) 

with the additional scaling conditions 

Ah(z)/Ay = (Ba - Ab)/ (Ac - Ca) (4) 

and 

Ax/Ah(z)  = (Cb - Bc)/(Ba - Ab) (5) 

A indicates finite increments of the corresponding 
variables. It has also been demonstrated that the WLF 
equation can be obtained from the scaling condition 
expressed by Equation 5 [9], if 

h(z) = p + q/(r + z) (6) 

where p, q and r are constants, independent of z. In 
fact, Equation 5 written as 

Ah(z) /Ax = K = constant (7) 

and combined with Equation 6, leads to [9] 

A x  = - C , ( z o ) A z l [ G ( Z o )  + az] (8) 

with A Z =  z - z0, where z0 is a reference value and 
C~, C2 depend on z0, A more detailed analysis of the 
relationships between p, q, r and C,, C2 is presented in 
the Appendix. 

Equation 1 can easily be obtained from Equation 8 
with the change of variables x = log(aT), z0 = T, and 
z = T - Ts. Furthermore, it can be shown that [9] 

C,(T,)  = C,(Tg) C2(Tg) [C2(Tg) - Tg q- T s ] - '  (9) 

C2(T,) = C2(Tg  ) - -  Tg q-- T, (10) 

where G(Tg) and C2(Tg) are the values of C1 and 
C2, respectively, when the reference temperature is 
taken at the glass transition, that is, T s = Tg. From 
Equations 9 and 10 it is easy to show that 

G(T~)  C2(Ts) = CI(Tg) C2(Tg) (11) 

where [9] 

and 

C,(Tg) = - /3*  v*/vfg (12) 

C2(Tg) = Vfg/~Vg (13) 

C,(Tg) C2(Tg) = - 3 *  v*/~Vg (14) 

Vg and Vfg are the total and the free volume, respec- 
tively, associated with each polymer segment at the 
glass transition, v* is the critical free volume, vr is the 
free volume associated with each segment, above the 
glass transition, ~ is the expansion coefficient for 
the gross liquid minus the expansion coefficient for the 
glass, and 

fl* ~- [ln(v*/vf) - 1] (15) 

G(Tg) and C2(Tg) do not depend on the system con- 
sidered [2] and, consequently, will be indicated in what 
follows simply as C1 and C2. 

2.1. Reference temperature at TQ 
The situation will be considered, next, in which several 
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log aT against T curves have been determined, in 
different systems, by taking Tg as the reference tem- 
perature, then,  each curve can be expressed by 

log aT = - C I  ( T  - Tg)l[C2 + T -  Tg] (16) 

where Tg has different values for the different systems. 
Equation 16 can be written as 

log aT/- -C,  = {1 + 1/[(T/C2) - (TglC2)]}-' (17) 

which can be reduced to the form of Equation 2 by 
making the change of variables x = T, y = log aT 
and z = Tg, that is, 

Cl y = g C2 

then, A = 1/C2, B = O, C = - 1 / C 2 ,  a = O, b = 
-1/C1, c = 0, d =  0 and h ( z ) =  z. The scaling 
relationships, given by Equations 3, 4 and 5, are 
reduced to 

A y / A x  = Alog aT/AT = 0 (19) 

AylAh(z)  = AlogaT/ATg = 0 (20) 

Ah(z) /Ax = A T g / A T  = 1 (21) 

showing that Equation 16 has a scaling relationship in 
the log aT against T diagram with a translation path 
parallel to the abscissa. Furthermore, because ATg = 
AT the magnitude of  the translation depends only on 
the difference between the glass transition tempera- 
tures of the different systems. Then, if a system is 
selected as reference, a master log aT against T curve 
can be constructed for all the systems by translations 
parallel to the T-axis. It is evident from Equation 16 
that a plot of log aT against (T - Tg) would lead to an 
unique curve for all the systems. 

2.2. Reference temperature at a constant 
value above To 

If  instead of Tg., a reference temperature T~ is selected 
in such a way that Ts = Tg + 6, where 6 has a con- 
stant value for all the systems, then, according to 
Equations 9 and 10 

Cl (T~) 

G ( T 0  

and 

= c , G / ( G  + 6) (22) 

= c'2 + 6 (23)  

log aT = --C, C 2 [ T -  (Tg + 6)]/(G + a) 

x [C2 + 6 - (Tg + 6)] (24) 

According to Equations 22 and 23, Cl (Ts) and C2(Ts) 
have the same values for all the systems because 6 is 
constant. By using the same procedure as in the prev- 
ious case, except that z = Ts = Tg + 6, Equations 20 
and 21 are obtained again and Equation 22 is changed 
to 

ATJAT = A(Tg + 6)IAT = ATglAT = 1 (25) 

Then, a master log aT against T curve can be obtained 
for all the systems by a translation along the abscissa. 
Furthermore, it is evident from Equation 24 that 
a unique curve is obtained if log aT is plotted as a 
function of ( T -  T~) = [ T -  (Tg + 6)]. 



2.3. Arb i t ra ry  reference tempera ture  
According to Equations 1, 9 and 10, log a~ not only 
depends on T,, that is on the reference temperature, 
but also on Tg, which means that it depends also on 
the system considered. Then, it can be stated that the 
log aT against T curves can be described by the implicit 
function 

F ( T ,  log aT, T~, Tg) = 0 (26) 

In order to analyse the translations needed to 
superimpose two log aT against T curves, correspond- 
ing to a given system P~ at the reference temperature 
T~ and to another system P2 at the reference tempera- 
ture T~2, it is necessary first to consider the translation 
on the surface characterized by Tg~ where a displace- 
ment is produced from T~ = T~ to T~ = Tgl. Then, 
on considering the surface Ts = Tg, a new translation 
is performed to go from the curve for system P~ to 
the one corresponding to system P2. Finally, on the 
surface for system P2, characterized by Tg2, an addi- 
tional translation is performed to go from T~ = Tg~ to 
rs = r 2. 

It will be shown, next, that the first and the third 
translations are parallel to the log aT-axis, while the 
second one is parallel to the T-axis, in the log aT 
against T diagram. In fact, the first translation is 
performed under the condition Tg = Tg I = constant. 
As shown in the Appendix 

C~ (T~) = q/K(r  + Ts) (27) 

C2(T~) = r + T~ (28) 

where r depends on Tg. On substituting Equations 27 
and 28 into Equation 1 it is easy to show that 

K 1 1 
- - - l o g a s  - (29) 

q r +  T~ r +  T 

On making the change of variables x = T, y = log aT 
and 

1 
h(z) - (30) 

r + z  

Equation 29 can be written as 

x + r = 1 + h(z) = q + h(z) 

(31) 

Equation 31 is of the form of Equation 2 with A = 0, 
B = q / K , C  = 1,a = 1, b = 0, c = 0 a n d d  = r, so 
that Equations 3 to 5 are reduced to 

A y / A x  = Alog aT~AT = 1/0 (32) 

Ay/Ah(z)  = - q / K  (33) 

Ah(z) /Ax  = ( - q / K ) / O  (34) 

Then, Equation 32 shows that the first translation is 
parallel to the log aT-axis. 

The second translation, with T~ = Tg, has been 
already considered in Section 2.1, where it has been 
shown that the displacement is parallel to the T-axis 
(Equation 19). Finally, the third translation is analog- 
ous to the first, on considering Ts = Tg2, and, con- 

sequently, the translation path is parallel to the 
log aT-axis. 

In summary, on going from the log aT against T 
curve, at the reference temperature T~2 and for a given 
system characterized by Tg2, to the log a T against T 
curve for another system characterized by Tg~ and at 
the reference temperature T,I, it is necessary to per- 
form a translation (Ax, Ay) = (AT, Alog aT)  where 

Ax = AT = (Tg2 - Tg ) (35) 
The increment Ay is given by 

ay  = Ay t + ay  2 (36) 

where Ay 1 and Ay2 correspond to the translations 
at Tg~ and Tg2, respectively. In fact, according to 
Equation 33 

q Ah(z) (37) Ay - K 

and, from Equation 30 

ah(z) 

so that 

= - A z / ( r  + z) (r + z + Az) (38) 

q Az/(r + z) (r + z + Az) (39) Ay = ~. 

In particular, for Tg = Tgl and T~ = Tsl, Equation 39 
leads to 

Ay I = q (Tg 1 - Ts,)/K[r(Tg,) + Ts~] 

x [r(Tg,) + Tgl] (40) 

and, for Tg = Tg2 and T~ = T,2 to 

Ay2 = q(T~2 - Tg2)/K[r(Tg2) + T,21 [r(Tg2) + Tg2] 

(41) 

On taking into account that r = (72 - Tg, Equations 
40 and 41 can be written as 

m y  I = q ( T g  1 - T s l ) / K  C 2 [ C  2 - Tg 1 + Tsl ] ( 42 )  

and 

AY2 = q(Ts2 - Tgz)/K C2[C2 - Tg2 + T,21 (43) 

By adding Equations 42 and 43 it can be easily shown 
that 

_ q {[(Tg I - -  T s l ) / ( C  2 - -  Tg 1 Ay = Alog aT K C 2 

--}- Tsl)] --}- [(Ts2 - Tg2)/ 

( C 2 -  Tg2 + Ts2)]} (44) 

The slope of the translation path, in the log aT against 
T diagram, is obtained by combining Equations 35 
and 44, on taking into account that Cl C2 = q/K, 
leading to 

# = A l o g a T / A T  = C, C 2 [ ( T g , -  Tg2) 

- -  ( Z s l  - -  rs2)]/[(rg 2 - -  r g l )  

x ( C 2 -  Tg, + T,,) 

× (c2  - Tg2 + T,2)] (45) 
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Finally, in the particular case in which T,I - Tgl = 
Ts2 - Tg2 = 6, Equation 45 reduces to 

# = Alog aT~AT = 0 (46) 

and the translation path is parallel to the abscissa. This 
is the particular case already considered in Section 2.2. 

3. Discussion 
As pointed out earlier in the paper, according to 
Williams et al. [6], if a reference temperature is chosen 
arbitrarily for one system, the plots of log aT against T 
for other systems can be matched with horizontal and 
vertical translations, using transparent paper for coin- 
cidence in shape. This rather unclear and empirical 
procedure can be understood in terms of the scaling 
concept and the equations developed in the paper. In 
fact, if several log aT against T curves are plotted, for 
different systems and at different reference tempera- 
tures, they can be superimposed to form a master 
curve, along the translation path given by Equation 
45. It should be pointed out that the translation path 
is different for different pairs of curves, because # 
depends on T~ and Tg. In addition, the translation path 
# will not, in general, be parallel to the coordinate 
axes, that is, horizontal and vertical translations are 
needed, to compose the master log a~ against T curve. 
This explains the statement of Williams et al. 

As pointed out in Section 2, the same log aT against 
T master curve, once a given system is selected as 
reference, would be obtained by means of only hori- 
zontal translations, if the reference temperature for all 
the systems is chosen as Tg + 6, where 6 is a fixed 
value. Furthermore, Williams et al. computed only the 
total horizontal displacement for each pair of curves, 
which is independent from the vertical translation 
and, consequently, the value AT = ATg will always be 
obtained for each pair of systems. In addition, as these 
authors selected Ts = Tg + 6, with 6 = 44 K, for the 
reference temperature of the first system (a high mol- 
ecular weight polyisobutylene), on which the master 
log av against T curve will be constructed, the hori- 
zontal displacements will be given by taking the refer- 
ence temperature Tg + 44K for the other systems, 
where Tg changes accordingly with the system used. In 
other words, the matching of the different curves, with 
respect to the reference curve, will be obtained for 
reference temperatures, Ts, such that Ts - Tg = 44 K. 
Williams et al. obtained empirically Ts - Tg = 50 _+ 
5 K, due to the uncertainties in Tg and the errors invol- 
ved during the translations performed with tracing 
paper. 

Finally, as shown by Equation 24, an universal 
log aT against [T - (Tg + f)] curve will be obtained, 
for all the systems, if 6 is constant. As Williams 
et al. selected T, = Tg + 44K or, roughly, T~ = 
Tg + 50 K, they obtained an universal log aT against 
(T - T,) curve. It should also be pointed out that 
a universal curve should have been obtained for 
6 = 40, 60 K etc., that is, for any fixed value of the 
reference temperature above the glass transition tem- 
perature, in the temperature region where the model is 
valid. 

4. Conclusions 
The superposition properties of the WLF relationship, 
obtained in different polymer systems, have been 
analysed in terms of a more general formalism of 
functions with a scaling property. 

An analytical description of the scaling properties 
of the function log aT against T has been presented 
and the influence of the selected reference tempera- 
ture on the translations needed to obtain the universal 
aT(T -- 7,) curve, has been discussed. 
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Appendix 
Combining Equations 7 and 8 of the text leads to 

Ah(z) = - K Cl (Zo) Az/[C2(zo) + Az] (A1) 

In addition, Ah(z) can be expressed as 

Ah(z) = ~. [h(")(Zo)/n!] (Az)" (A2) 
n=l  

where h(")(Zo) indicates the value of the derivative of 
h(z) of order n, at z = z0. Then 

- - X  C l ( Z 0 )  Az/[C2(zo)  --~ Az] = ~ [h(')(Zo)/n!] (Az)" 
n=l  

(A3) 

Equation A3 can be written as 

- K  C,(zo) Az = C2(zo) h°)(Zo) Az 

+ ~. {[C2(z0) h("+')(Zo)/(n+ 1)] 
n=l  

+ h~°~(z0)} (Az) "+l 
n! (A4) 

On comparing both polynomials, term by term, it is 
easy to show that 

h(")(Zo) = ( -  1)" n! K C,(zo)/C~(zo) (A5) 

and Equation A2 can be written as 

Ah(z) = K Cl(zo) ~, [ ( -  1)"(Az)"/C~(zo) ] (A6) 
n=l  

If [Az[ < C2(zo) the series in Equation A6 converges 
to {1 + Az/[C2(zo)]} -~ - 1 leading to 

Ah(z) = {K C,(zo) C2(zo)/[C2(zo) + Az]} 

and 

- K Cl (z0) (A7) 

h(z) = h(zo) + {K Cl(Zo) C2(zo)/ 

[C2(z0) + (z -- z0)]} -- K Cl(zo) 

(A8) 
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On comparing Equation A8 with Equation 6 of the 
text, gives 

p = h(zo) - KCl (Zo)  (A9) 

q = K C 1 (.70) C 2 (z 0) (A 10) 

r = C2(z0) - z0 (Al l )  

Moreover, making the change of variable z 0 = T~, 
leads to 

and 

C,(Ts) = q /K  (r + T~) (A12) 

C2(Ts) = r + T~ (A13) 

Finally, on taking increments of Equation 6 it is easy 
to show that [9] 

h(z) = - q A z / ( r  + z) (r + z + Az) (A14) 
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